

Chapter 2: The Representation of Knowledge

Objectives

- Introduce the study of logic
- Learn the difference between formal logic and informal logic
- Learn the meaning of knowledge and how it can be represented
- Learn about semantic nets
- Learn about object-attribute-value triples

Objectives Continued

- See how semantic nets can be translated into Prolog
- Explore the limitations of semantic nets
- Learn about schemas
- Learn about frames and their limitations
- Learn how to use logic and set symbols to represent knowledge

Objectives Continued

- Learn about propositional and first order predicate logic
- Learn about quantifiers
- Explore the limitations of propositional and predicate logic

What is the study of logic?

- Logic is the study of making inferences given a set of facts, we attempt to reach a true conclusion.
- An example of <u>informal</u> logic is a courtroom setting where lawyers make a series of inferences hoping to convince a jury / judge .
- Formal logic (symbolic logic) is a more rigorous approach to proving a conclusion to be true / false.

Why is Logic Important

- We use logic in our everyday lives "should I buy this car", "should I seek medical attention".
- People are not very good at reasoning because they often fail to separate word meanings with the reasoning process itself.
- <u>Semantics</u> refers to the meanings we give to symbols.

The Goal of Expert Systems

- We need to be able to separate the actual meanings of words with the reasoning process itself.
- We need to make inferences w/o relying on semantics.
- We need to reach valid conclusions based on facts only.

Knowledge vs. Expert Systems

- Knowledge representation is key to the success of expert systems.
- Expert systems are designed for knowledge representation based on rules of logic called inferences.
- Knowledge affects the development, efficiency, speed, and maintenance of the system.

Arguments in Logic

- An argument refers to the formal way facts and rules of inferences are used to reach valid conclusions.
- The process of reaching valid conclusions is referred to as logical reasoning.

How is Knowledge Used?

- Knowledge has many meanings data, facts, information.
- How do we use knowledge to reach conclusions or solve problems?
- Heuristics refers to using experience to solve problems using precedents.
- Expert systems may have hundreds / thousands of microprecedents to refer to.

Epistemology

- Epistemology is the formal study of knowledge.
- Concerned with nature, structure, and origins of knowledge.

Categories of Epistemology

•Philosophy •A priori

•A posteriori •Procedural

•Declarative •Tacit

A Priori Knowledge

- "That which precedes"
- Independent of the senses
- Universally true
- Cannot be denied without contradiction

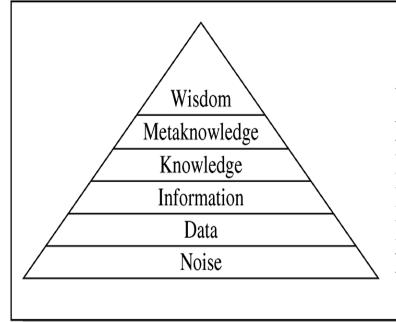
A Posteriori Knowledge

- "That which follows"
- Derived from the senses
- Now always reliable
- Deniable on the basis of new knowledge w/o the necessity of contradiction

Procedural Knowledge

Knowing how to do something:

- Fix a watch
- Install a window
- Brush your teeth
- Ride a bicycle


Declarative Knowledge

- Knowledge that something is true or false
- Usually associated with declarative statements

Tacit Knowledge

- Unconscious knowledge
- Cannot be expressed by language
- E.g., knowing how to walk, breath, etc.

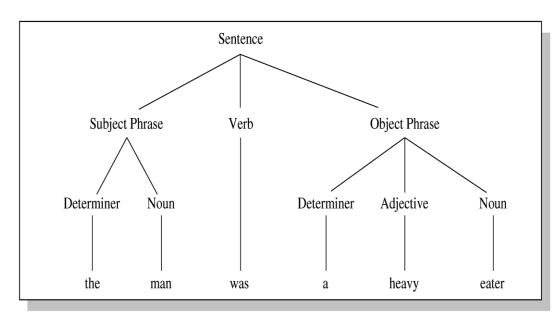
The Pyramid of Knowledge

Wisdom: Using knowledge in a beneficial way
Metaknowledge: Rules about knowledge
Knowledge: Rules about using information
Information: Potentially useful for knowledge
Data: Potentially useful information
Noise: No apparent information.

Knowledge Types Example

- 46543218751321768732
- Group numbers by twos. Ignore any two-digit number less than 32. Substitute the rest by ASCII equivalent
- GOLD 438+
- If price less than 500 and rising, buy.

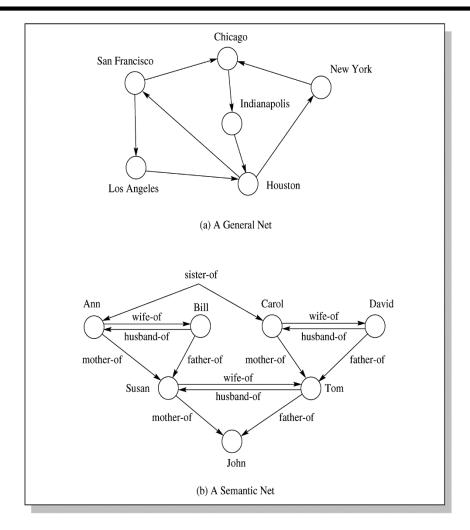
Metaknowledge


- Metaknowledge is knowledge about knowledge and expertise.
 - Ex. Emotions
- In an expert system, an ontology is the metaknowledge that describes everything known about the problem domain.
- Wisdom is the metaknowledge of determining the best goals of life and how to obtain them.

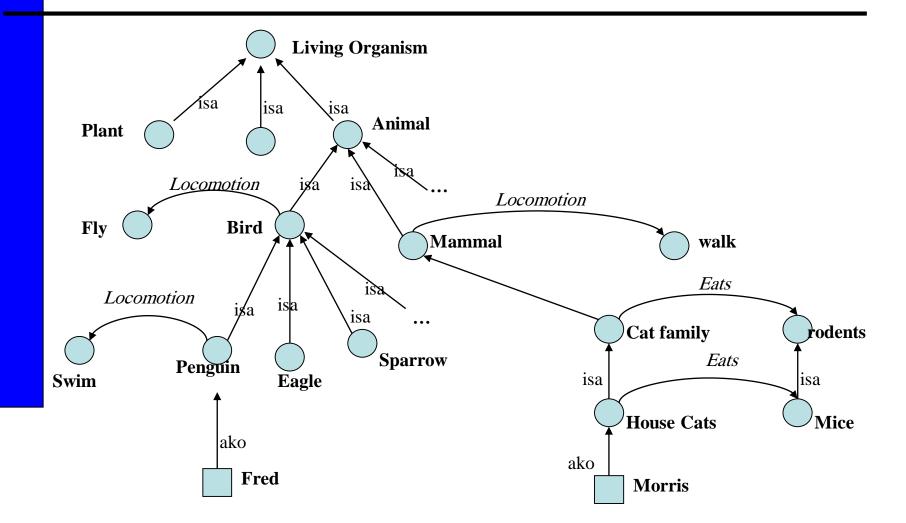
Knowledge Representation Techniques

- Rules
- Semantic nets
- Frames
- Scripts
- Logic
- Conceptual graphs

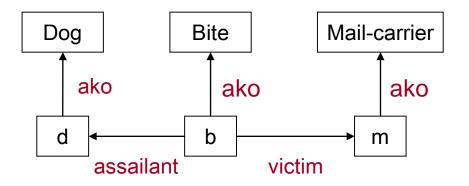
Productions (Rules)


- Meta Language, BNF, Pars Tree, ...
- Finite State Machines
- Hidden Markov Models

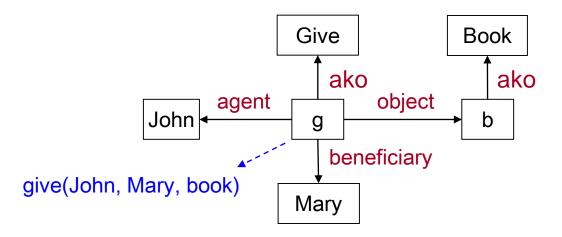
Semantic Nets

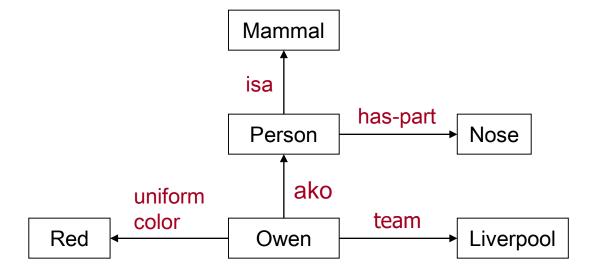

- Rooted from Human Associative Memory
- A classic representation technique for propositional information
- Propositions a form of declarative knowledge, stating facts (true/false)
- Propositions are called "atoms" cannot be further subdivided.
- Semantic nets consist of nodes (objects, concepts, situations) and arcs (relationships between them).

Two Types of Nets

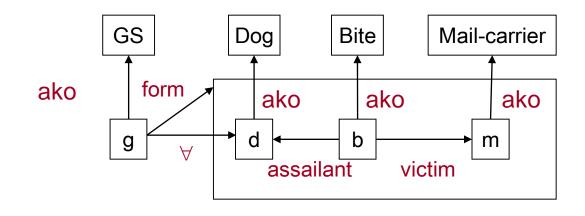


Common Types of Links


- IS-A relates an instance or individual to a generic class
- A-KIND-OF relates generic nodes to generic nodes



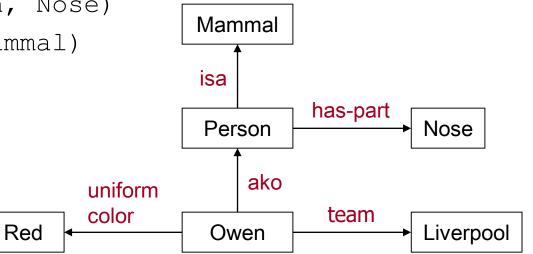
"The dog bit the mail carrier"



"John gives Mary a book"

"Every dog has bitten a mail-carrier"

Object-Attribute-Value Triple


- One problem with semantic nets is lack of standard definitions for link names (IS-A, AKO, etc.).
- The OAV triplet can be used to characterize all the knowledge in a semantic net.

- OAV Tabl

	Object	Attribute	Value
1	apple	color	red
	apple	type	mcintos
	apple	quantity	100
	grapes	color	red
	grapes	type	seedless
	grapes	quantity	500

PROLOG and Semantic Nets

- UniformColor(Owen,Red).
- Team(Owen, Liverpool)
- AKO(Owen, Person).
- HasPart(Person, Nose)
- ISA(Person, Mammal)

Problems with Semantic Nets

- To represent definitive knowledge, the link and node names must be rigorously defined.
- A solution to this is extensible markup language (XML) and ontologies.
- Problems also include combinatorial explosion of searching nodes.
 - Ex. What's the name of Pluto planet's football team?

• Inability to define knowledge the way logic can, and heuristic inadequacy.

Schemata

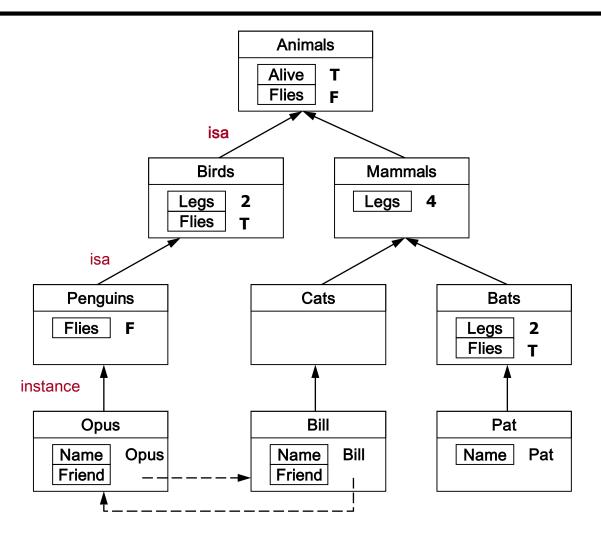
- Knowledge Structure an ordered collection of knowledge not just data.
- Semantic Nets are shallow knowledge structures all knowledge is contained in nodes and links.
- Schema is a more complex knowledge structure than a semantic net.
- In a schema, a node is like a record which may contain data, records, and/or pointers to nodes.

Frames

- One type of schema is a frame (or script timeordered sequence of frames).
- Frames are useful for simulating commonsense knowledge.
- Semantic nets provide 2-dimensional knowledge; frames provide 3-dimensional.
- Frames represent related knowledge about narrow subjects having much default knowledge.

Figure 2.8 A Car Frame

Slots	Fillers
manufacturer	General Motors
model	Chevrolet Caprice
year	1979
transmission	automatic
engine	gasoline
tires	4
color	blue


Frame Examples

ONE/MORE GOOD FRAME SAMPLES

Lecture	
Specialisation of: meeting	A Lecturer
Context: large number of students	
Course: Op. Systems	
Level: Difficult	Tolerance: Intolerant If intolerant, then
If difficult, then pay attention	turn off mobile phone
Lecturer:	If intolerant, then pay attention
Room*:	

Expert Systems: Principles and Programming, Fourth Edition

Frame Examples

Expert Systems: Principles and Programming, Fourth Edition

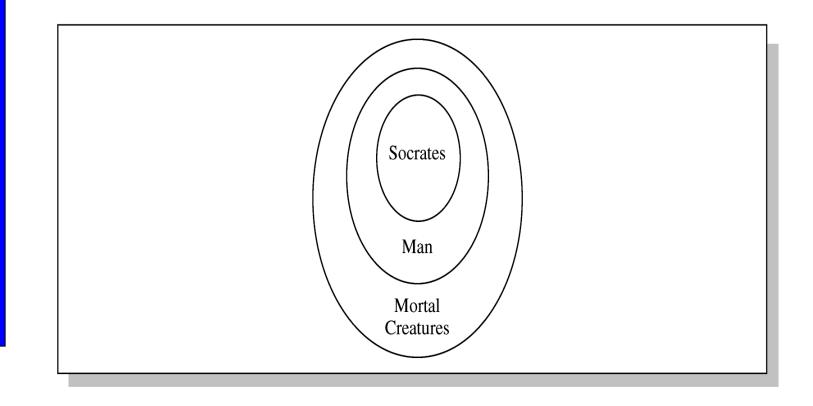
Frames Continued

- A frame is a group of slots and fillers that defines a stereotypical object that is used to represent generic / specific knowledge.
- Commonsense knowledge is knowledge that is generally known.
- Prototypes are objects possessing all typical characteristics of whatever is being modeled.
- Problems with frames include allowing unrestrained alteration / cancellation of slots.

Logic and Sets

- Knowledge can also be represented by symbols of logic.
- Logic is the study of rules of exact reasoning inferring conclusions from premises.
- Automated reasoning logic programming in the context of expert systems.

Forms of Logic

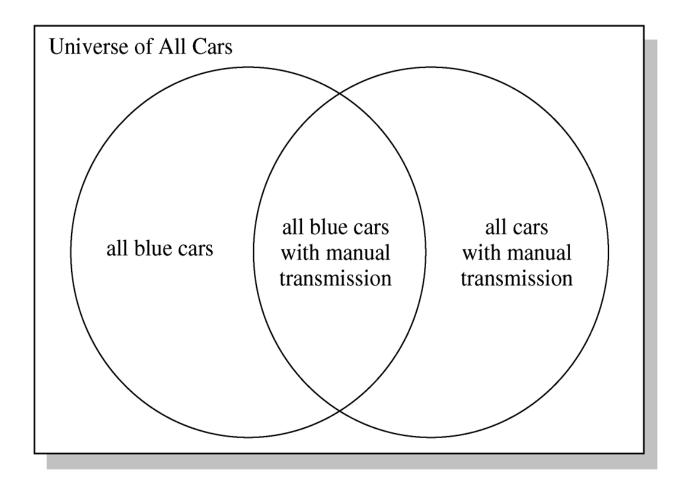

- Earliest form of logic was based on the syllogism - developed by Aristotle.
- Syllogisms have two premises that provide evidence to support a conclusion.
- Example:
 - Premise: All cats are climbers.
 - Premise:

- Garfield is a cat.
- Conclusion: *Garfield is a climber.*

Venn Diagrams

- Venn diagrams can be used to represent knowledge.
- Universal set is the topic of discussion.
- Subsets, proper subsets, intersection, union, contained in, and complement are all familiar terms related to sets.
- An empty set (null set) has no elements.

Figure 2.13 Venn Diagrams


Propositional Logic

- Formal logic is concerned with syntax of statements, not semantics.
- Syllogism:
 - All goons are loons.
 - Zadok is a goon.
 - Zadok is a loon.
- The words may be nonsense, but the form is correct this is a "valid argument."

Boolean vs. Aristotelian Logic

- Existential import states that the subject of the argument must have existence.
- "All elves wear pointed shoes." not allowed under Aristotelian view since there are no elves.
- Boolean view relaxes this by permitting reasoning about empty sets.

Figure 2.14 Intersecting Sets

Boolean Logic

- Defines a set of axioms consisting of symbols to represent objects / classes.
- Defines a set of algebraic expressions to manipulate those symbols.
- Using axioms, theorems can be constructed.
- A theorem can be proved by showing how it is derived from a set of axioms.

Other Pioneers of Formal Logic

- Whitehead and Russell published *Principia Mathematica*, which showed a formal logic as the basis of mathematics.
- **Gödel** proved that formal systems based on axioms could not always be proved internally consistent and free from contradictions.

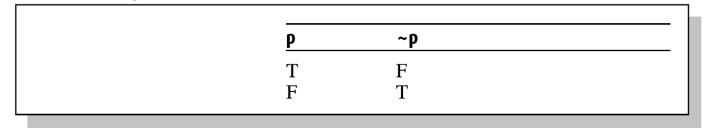
Features of Propositional Logic

- Concerned with the subset of declarative sentences that can be classified as true or false.
- We call these sentences "statements" or "propositions".
- Paradoxes statements that cannot be classified as true or false.
- Open sentences statements that cannot be answered absolutely.

Features Continued

- Compound statements formed by using logical connectives (e.g., AND, OR, NOT, conditional, and biconditional) on individual statements.
- Material implication $-p \rightarrow q$ states that if p is true, it must follow that q is true.
- Biconditional p ↔ q states that p implies q and q implies p.

Features Continued


- Tautology a statement that is true for all possible cases.
- Contradiction a statement that is false for all possible cases.
- Contingent statement a statement that is neither a tautology nor a contradiction.

Truth Tables

Table 2.4 Truth Table of the Binary Logical Connectives

P	q	P ^ q	p ∨ q	$\mathbf{p} ightarrow \mathbf{q}$	$\mathbf{p} \leftrightarrow \mathbf{q}$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	F	Т	Т	F
F	F	F	F	Т	Т

Table 2.5 Truth Table of Negation Connectives

Expert Systems: Principles and Programming, Fourth Edition

Universal Quantifier

• The universal quantifier, represented by the symbol < means "for every" or "for all".

 $(\ll x)$ (x is a rectangle \rightarrow x has four sides)

• The existential quantifier, represented by the symbol sy

(x - 3 = 5)

• Limitations of predicate logic – *most* quantifier.

Summary

- We have discussed:
 - Elements of knowledge
 - Knowledge representation
 - Some methods of representing knowledge
- Fallacies may result from confusion between form of knowledge and semantics.
- It is necessary to specify formal rules for expert systems to be able to reach valid conclusions.
- Different problems require different tools.